Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
Cancers ; 15(5), 2023.
Article in English | EuropePMC | ID: covidwho-2271088

ABSTRACT

Simple Summary There are contradictory data about coronavirus disease (COVID-19) in patients with hematological malignancies. In this population-based study we evaluated severity and survival of unvaccinated patients with hematological malignancies (HM) and COVID-19 in the Madrid region, Spain, between early February 2020 and February 2021. Also, a comparison was made with non-cancer patients from the SEMI-COVID registry and post COVID-19 conditions were evaluated. Overall, 30-day mortality was 32.7%, with higher mortality among certain groups of patients (aged ≥ 60 years, presence of ≥ 3 comorbidities, diagnosis of AML/ALL, treatment with conventional chemotherapy within 30 days of COVID-19 diagnosis, recipients of systemic corticosteroids as COVID-19 therapy). Mortality rates were similar between earlier and later phases of the pandemic, not paralleling the reduction of mortality in non-cancer patients. Up to 27.3% patients had a post COVID-19 condition. These findings will be useful to understand COVID-19 morbidity and mortality in unvaccinated patients diagnosed with HM. Abstract Mortality rates for COVID-19 have declined over time in the general population, but data in patients with hematologic malignancies are contradictory. We identified independent prognostic factors for COVID-19 severity and survival in unvaccinated patients with hematologic malignancies, compared mortality rates over time and versus non-cancer inpatients, and investigated post COVID-19 condition. Data were analyzed from 1166 consecutive, eligible patients with hematologic malignancies from the population-based HEMATO-MADRID registry, Spain, with COVID-19 prior to vaccination roll-out, stratified into early (February–June 2020;n = 769 (66%)) and later (July 2020–February 2021;n = 397 (34%)) cohorts. Propensity-score matched non-cancer patients were identified from the SEMI-COVID registry. A lower proportion of patients were hospitalized in the later waves (54.2%) compared to the earlier (88.6%), OR 0.15, 95%CI 0.11–0.20. The proportion of hospitalized patients admitted to the ICU was higher in the later cohort (103/215, 47.9%) compared with the early cohort (170/681, 25.0%, 2.77;2.01–3.82). The reduced 30-day mortality between early and later cohorts of non-cancer inpatients (29.6% vs. 12.6%, OR 0.34;0.22–0.53) was not paralleled in inpatients with hematologic malignancies (32.3% vs. 34.8%, OR 1.12;0.81–1.5). Among evaluable patients, 27.3% had post COVID-19 condition. These findings will help inform evidence-based preventive and therapeutic strategies for patients with hematologic malignancies and COVID-19 diagnosis.

2.
Cancers (Basel) ; 15(5)2023 Feb 27.
Article in English | MEDLINE | ID: covidwho-2271089

ABSTRACT

Mortality rates for COVID-19 have declined over time in the general population, but data in patients with hematologic malignancies are contradictory. We identified independent prognostic factors for COVID-19 severity and survival in unvaccinated patients with hematologic malignancies, compared mortality rates over time and versus non-cancer inpatients, and investigated post COVID-19 condition. Data were analyzed from 1166 consecutive, eligible patients with hematologic malignancies from the population-based HEMATO-MADRID registry, Spain, with COVID-19 prior to vaccination roll-out, stratified into early (February-June 2020; n = 769 (66%)) and later (July 2020-February 2021; n = 397 (34%)) cohorts. Propensity-score matched non-cancer patients were identified from the SEMI-COVID registry. A lower proportion of patients were hospitalized in the later waves (54.2%) compared to the earlier (88.6%), OR 0.15, 95%CI 0.11-0.20. The proportion of hospitalized patients admitted to the ICU was higher in the later cohort (103/215, 47.9%) compared with the early cohort (170/681, 25.0%, 2.77; 2.01-3.82). The reduced 30-day mortality between early and later cohorts of non-cancer inpatients (29.6% vs. 12.6%, OR 0.34; 0.22-0.53) was not paralleled in inpatients with hematologic malignancies (32.3% vs. 34.8%, OR 1.12; 0.81-1.5). Among evaluable patients, 27.3% had post COVID-19 condition. These findings will help inform evidence-based preventive and therapeutic strategies for patients with hematologic malignancies and COVID-19 diagnosis.

3.
Blood Cancer J ; 13(1): 8, 2023 01 05.
Article in English | MEDLINE | ID: covidwho-2185781

ABSTRACT

The long-term clinical efficacy of SARS-CoV-2 vaccines according to antibody response in immunosuppressed patients such as hematological patients has been little explored. A prospective multicenter registry-based cohort study conducted from December 2020 to July 2022 by the Spanish Transplant and Cell Therapy group, was used to analyze the relationship of antibody response over time after full vaccination (at 3-6 weeks, 3, 6 and 12 months) (2 doses) and of booster doses with breakthrough SARS-CoV-2 infection in 1551 patients with hematological disorders. At a median follow-up of 388 days after complete immunization, 266 out of 1551 (17%) developed breakthrough SARS-CoV-2 infection at median of 86 days (range 7-391) after full vaccination. The cumulative incidence was 18% [95% confidence interval (C.I.), 16-20%]. Multivariate analysis identified higher incidence in chronic lymphocytic leukemia patients (29%) and with the use of corticosteroids (24.5%), whereas female sex (15.5%) and more than 1 year after last therapy (14%) were associated with a lower incidence (p < 0.05 for all comparisons). Median antibody titers at different time points were significantly lower in breakthrough cases than in non-cases. A serological titer cut-off of 250 BAU/mL was predictive of breakthrough infection and its severity. SARS-CoV-2 infection-related mortality was encouragingly low (1.9%) in our series. Our study describes the incidence of and risk factors for COVID-19 breakthrough infections during the initial vaccination and booster doses in the 2021 to mid-2022 period. The level of antibody titers at any time after 2-dose vaccination is strongly linked with protection against both breakthrough infection and severe disease, even with the Omicron SARS-CoV-2 variant.


Subject(s)
COVID-19 , Humans , Female , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , SARS-CoV-2 , Cohort Studies , Prospective Studies
4.
Ann Hematol ; 101(9): 2053-2067, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1919767

ABSTRACT

Prior studies of antibody response after full SARS-CoV-2 vaccination in hematological patients have confirmed lower antibody levels compared to the general population. Serological response in hematological patients varies widely according to the disease type and its status, and the treatment given and its timing with respect to vaccination. Through probabilistic machine learning graphical models, we estimated the conditional probabilities of having detectable anti-SARS-CoV-2 antibodies at 3-6 weeks after SARS-CoV-2 vaccination in a large cohort of patients with several hematological diseases (n= 1166). Most patients received mRNA-based vaccines (97%), mainly Moderna® mRNA-1273 (74%) followed by Pfizer-BioNTech® BNT162b2 (23%). The overall antibody detection rate at 3 to 6 weeks after full vaccination for the entire cohort was 79%. Variables such as type of disease, timing of anti-CD20 monoclonal antibody therapy, age, corticosteroids therapy, vaccine type, disease status, or prior infection with SARS-CoV-2 are among the most relevant conditions influencing SARS-CoV-2-IgG-reactive antibody detection. A lower probability of having detectable antibodies was observed in patients with B-cell non-Hodgkin's lymphoma treated with anti-CD20 monoclonal antibodies within 6 months before vaccination (29.32%), whereas the highest probability was observed in younger patients with chronic myeloproliferative neoplasms (99.53%). The Moderna® mRNA-1273 compound provided higher probabilities of antibody detection in all scenarios. This study depicts conditional probabilities of having detectable antibodies in the whole cohort and in specific scenarios such as B cell NHL, CLL, MM, and cMPN that may impact humoral responses. These results could be useful to focus on additional preventive and/or monitoring interventions in these highly immunosuppressed hematological patients.


Subject(s)
Antineoplastic Agents , COVID-19 , Antibodies, Monoclonal , Antibodies, Viral , BNT162 Vaccine , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19 Vaccines , Early Detection of Cancer , Humans , SARS-CoV-2 , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL